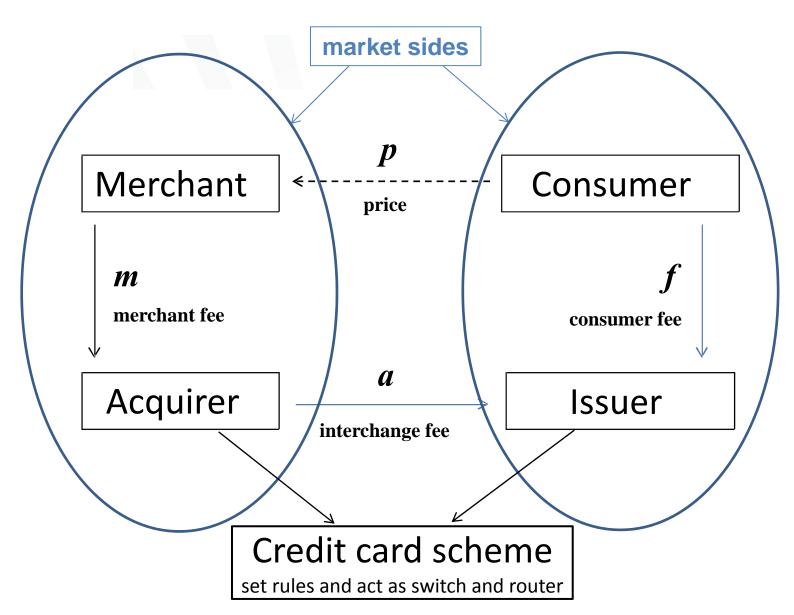
VIII Annual Seminar on Risk, Financial Stability and Banking

São Paulo August 8, 2013

Price Differentiation and Menu Costs in Credit Card Payments

Marcos Valli Jorge


Banco Central do Brasil

Wilfredo Leiva Maldonado

Catholic University of Brasilia

Market structure

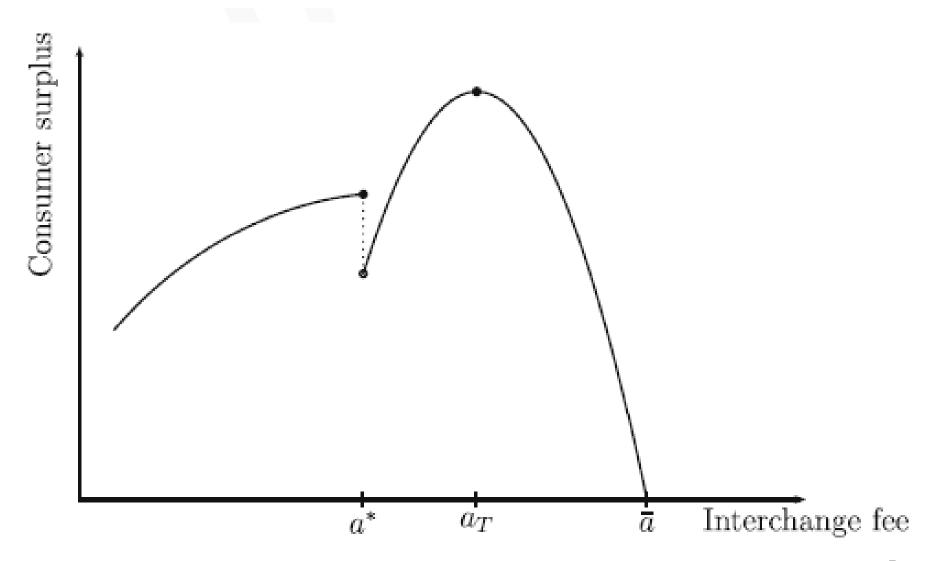
(four-party scheme)

Main reference

- Rochet&Wright (JBF 2010): "Credit card interchange fees"
 - "General tendency for merchants to adhere to the setting of a single price regardless of the form of payment."
 - "Part of the reason for this is the no-surcharge rules adopted by the credit card systems."
 - "If retailers were able and willing to discriminate based on the use of store credit, they maybe able to induce consumers to use credit cards and store credit efficiently."
 - "One <u>important direction for future research</u>: to extend our model to <u>allow retailers to offer different prices</u> when consumers make use of store credit."

Main aspects of R&W's approach

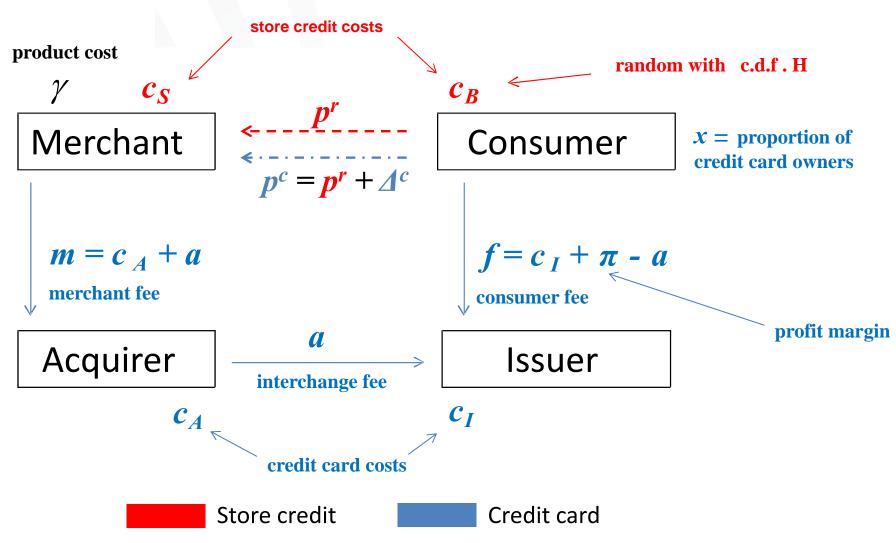
- Model the <u>credit functionality</u> of a credit card: much of the existing literature treats payment card as debit card;
- Consider the <u>store credit</u> as a <u>competitor</u> of the credit card (in addition to cash);
- <u>Cardholders</u> can <u>not internalize</u> retailers' <u>net avoided costs</u> from credit card usage (merchant fee minus cost of store credit);
- Model the <u>excessive usage</u> of credit cards: increase interchange fee can reduce consumers aggregated welfare;

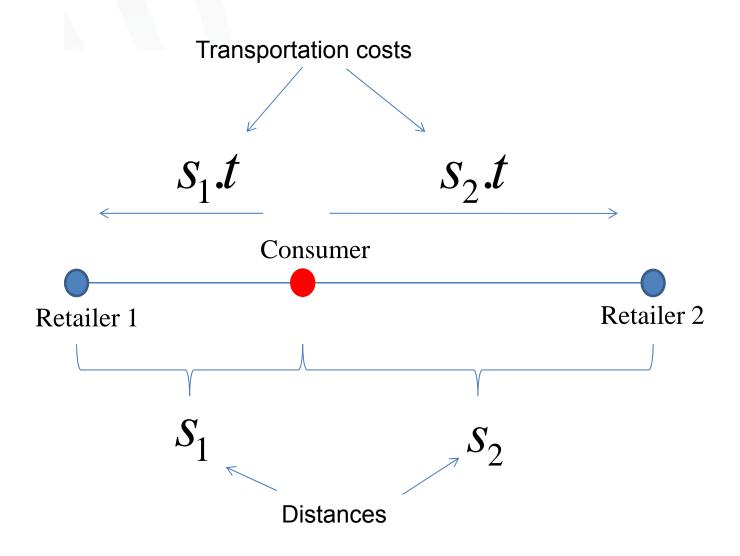

Results under non surcharge rule Rochet&Wright (JBF 2010)

- Single price equilibrium;
- Interchange fee is not neutral:
 - It affects card usage (real allocations);
 - There is an endogenous cap:
 - The monopoly card network <u>raise</u> it to increase credit card usage and <u>maximize profit</u>;
 - If sufficiently <u>high</u>, merchants do <u>not adhere</u> to the credit card system;
 - The cap value <u>exceeds</u> the <u>level that maximizes</u> consumer <u>surplus</u>;

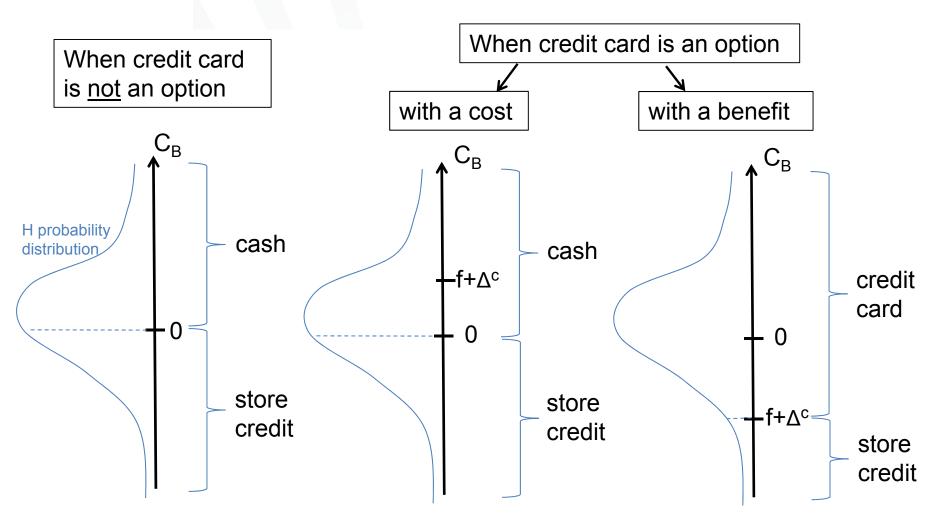
Results under non surcharge rule Rochet&Wright (JBF 2010)

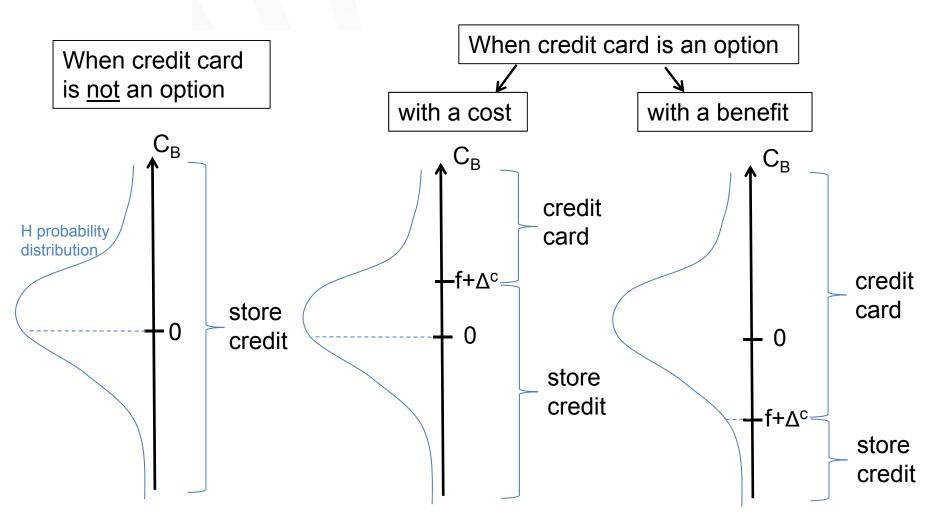
- If regulators only care about consumer surplus:
 - A conservative <u>regulatory</u> approach is to <u>cap interchange fees</u>
 based on retailers' <u>net avoided costs</u> from not having to provide credit themselves.
 - This always <u>raises consumer surplus</u> compared to the unregulated outcome, sometimes to the <u>point of maximizing</u> consumer surplus.


Consumer's welfare under single price equilibrium


Methodology

- Three payment instruments: credit card, store credit and cash;
- Two types of purchases:
 - ordinary purchases (deterministic, using any of the three instruments)
 - extraordinary credit purchases (random, can not use cash);
- Two retailers dispute the market where consumers incur in transportation costs (Hotelling competition);
- Compute:
 - Consumers utilities;
 - Merchants market shares;
 - Merchants margins;
 - Merchants profits (margin x market share);
- Apply first order conditions to obtain equilibrium prices;


Model structure with price differentiation


Hotelling competition with transportation costs

Store credit random cost faced by consumers (ordinary purchases)

Store credit random cost faced by consumers (extraordinary purchases)

Indicators of acceptance

 Does the <u>consumer use</u> of credit cards <u>instead of cash</u> at the retailers i?

$$L_i^c = \begin{cases} 1 & \text{if credit card (or } f + \Delta_i^c \le 0) \\ 0 & \text{if cash} \end{cases}$$

Does the <u>retailer i adhere</u> to the credit card <u>system</u>?

$$L_i^r = \begin{cases} 1 & \text{if adhere system} \\ 0 & \text{otherwise} \end{cases}$$

Consumer's expected utility

$$U_{i} = u_{0} + \theta \cdot u_{1} - (1 + \theta) \cdot p_{i}^{r} - \int_{\underline{c}_{B}}^{0} c_{B} \cdot dH(c_{B}) - \theta \cdot E(c_{B}) + x \cdot L_{i}^{r} \cdot \overline{S}(a, \Delta_{i}^{c})$$

Utility of an ordinary purchases.

Cost of all purchases

Benefit from credit card transactions

Utility of extraordinary (credit) purchase with probability θ .


Cost of the store credit transactions (if x=0)

where

$$\overline{S}(a, \Delta_i^c) := (L_i^c + \theta) \cdot \left(\int_{f + \Delta_i^c}^{\overline{c_B}} (c_B - f - \Delta_i^c) \cdot dH(c_B) \right) - L_i^c \cdot \int_0^{\overline{c_B}} c_B \cdot dH(c_B)$$

Cost savings from substituting store credit for credit card

Indifferent consumer and retailers' market shares

Retailer's market share

$$\begin{split} & \big(U_i - s_i . t \big) - \big(U_j - (1 - s_i) . t \big) = 0 \\ & (1 + \theta) . \Big(p_j^r - p_i^r \Big) + x . \Big(L_i^r . \overline{S}(a, \Delta_i^c) - L_j^r . \overline{S}(a, \Delta_j^c) \Big) + t - 2 . t . s_i = 0 \end{split}$$

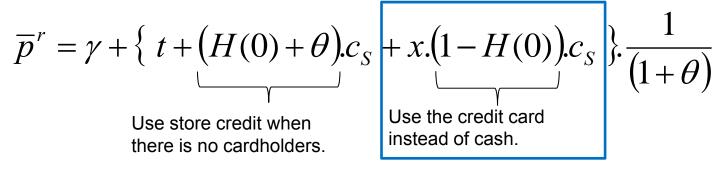
$$S_i = \frac{1}{2} + (1 + \theta) \cdot \left(\frac{p_j^r - p_i^r}{2.t} \right) + x \cdot \left(\frac{L_i^r \cdot \overline{S}(a, \Delta_i^c) - L_j^r \cdot \overline{S}(a, \Delta_j^c)}{2.t} \right)$$

zero when in equilibrium

Retailer's expected margin

$$M_i = \underbrace{(1+\theta).(p_i^r-\gamma)} - \underbrace{(H(0)+\theta).c_S} - x.L_i^r.\overline{\Gamma}(a,\Delta_i^c)$$
 Revenue Cost of store credit net of product cost. Cost of credit transactions (if $x=0$)

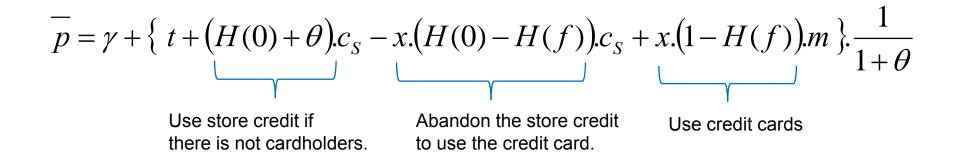
where


$$\overline{\Gamma}(a, \Delta_i^c) := (1+\theta) \cdot \left[1 - H(f + \Delta_i^c)\right] \left(m - \Delta_i^c - c_S\right) + \left[1 - H(0)\right] \cdot c_S$$

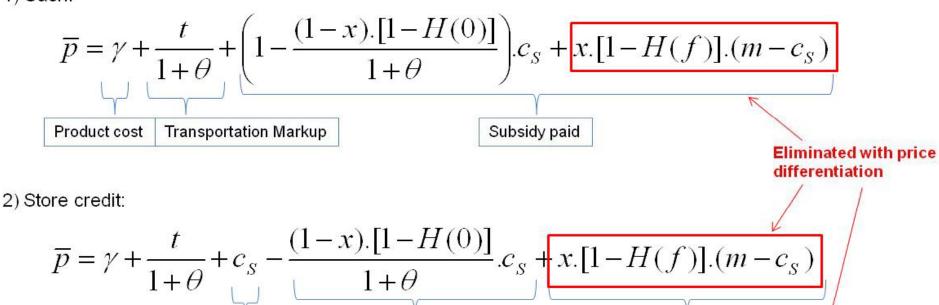
Cost of credit card transactions

Retailers' profits

$$\pi_i = s_i.M_i$$


Equilibrium prices under price differentiation

Subsidy to credit card users


$$\overline{p}^{c} = \overline{p}^{r} + \underline{m - c_{S}}$$
 retailers avoided cost
$$\overline{\Delta}^{c}$$

Rochet&Wright's single price

Cross subsidies under price differentiation

1) Cash:

Store credit cost

Subsidy received

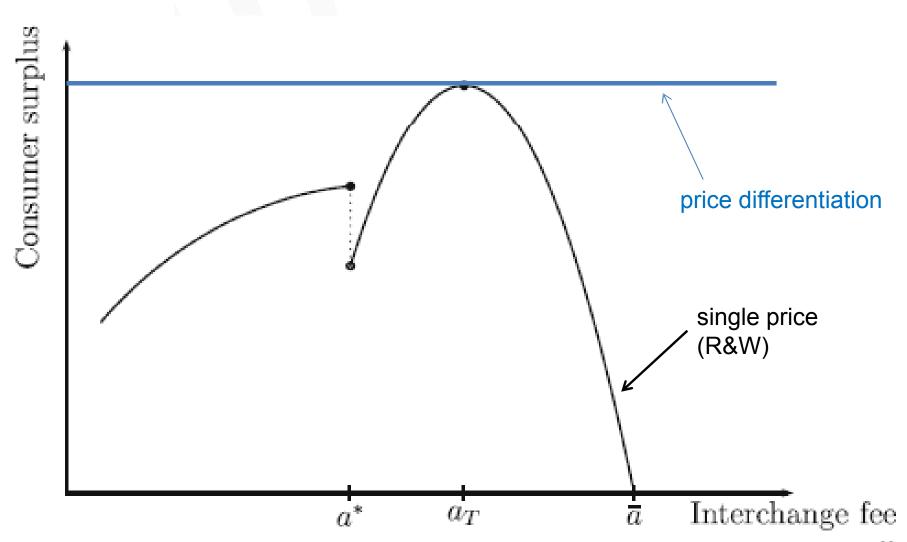
Subsidy paid

3) Credit card:

$$\overline{p} = \gamma + \frac{t}{1+\theta} + m - \frac{(1-x).[1-H(0)]}{1+\theta}.c_S - \underbrace{\{1-x.[1-H(f)]\}.(m-c_S)}$$
 Merchant fee Subsidy received Subsidy received

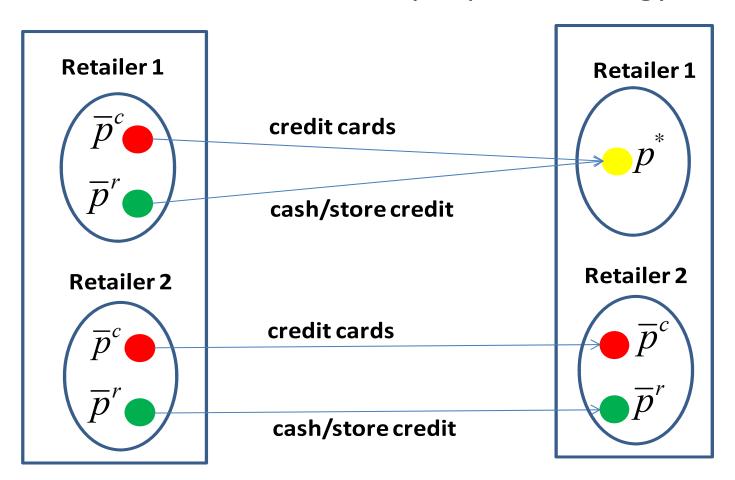
Mean price under price differentiation

Single price


$$\overline{p} = (1 - \alpha_0) \cdot \overline{p}^r + \alpha_0 \cdot \overline{p}^c$$

where $\alpha_0 := x \cdot [1 - H(f)]$ is the proportion of credit card owners that, under no-surcharge rule, prefer credit cards.

But $\alpha_{\Delta} = x.[1 - H(f + \overline{\Delta}^c)]$ is the proportion of credit card owners that, under price differentiation, prefer credit cards.


Then
$$\overline{\Delta}^c > 0 \implies \alpha_0 > \alpha_\Delta$$
 and $\overline{p}^c > \overline{p}^r$
$$\overline{p} > (1 - \alpha_\Delta) \cdot \overline{p}^r + \alpha_\Delta \cdot \overline{p}^c$$

Consumers' welfare under price differentiation

Results under price differentiation Valli&Maldonado (WP 2013)

Unilateral movement to unique price strategy:

Retailers' profits under price differentiation

Retailers' profits		Retailer 2	
		Differential prices	Single price
Retailer 1	Differential prices	t/2 ; t/2	$t/2 + \varepsilon/2$; $t/2 - \varepsilon.(1-\varepsilon/2t)$
			$t/2 + \varepsilon \cdot (1 + \varepsilon/2t)$; $t/2 - \varepsilon/2$
	Single price	$t/2 - \varepsilon.(1-\varepsilon/2t)$; $t/2 + \varepsilon/2$	t/2 ; t/2
		$t/2 - \varepsilon/2$; $t/2 + \varepsilon.(1+\varepsilon/2t)$	

$$\varepsilon(a) := \frac{1}{2} .x.(1+\theta) . \int_{-\delta+c_S-c_A-a}^{-\delta} (-\delta-c_B) .dH(c_B)$$

welfare gain of consumers and retailers from price differentiation equilibrium compared with the single price equilibrium

Margins with menu costs

where
$$I(\Delta_i^c) \coloneqq \begin{cases} 0 & \text{; if } \Delta_i^c = 0 \\ 1 & \text{; if } \Delta_i^c \neq 0 \end{cases}$$

Equilibrium prices under price differentiation with menu costs

$$\overline{p}_{1}^{r,\mu} = \overline{p}^{r} + \frac{1}{1+\theta} \cdot \left(\frac{2 \cdot \mu_{1} + \mu_{2}}{3} \right) \qquad \overline{p}_{2}^{r,\mu} = \overline{p}^{r} + \frac{1}{1+\theta} \cdot \left(\frac{\mu_{1} + 2 \cdot \mu_{2}}{3} \right)$$

$$\overline{p}_i^{c,\mu} = \overline{p}_i^{r,\mu} + \overline{\Delta}^c$$

Sufficient conditions:
$$\mu_1 \ge \mu_2$$
 $t \ge \frac{\mu_1 - \mu_2}{3}$ $\varepsilon(a) > \frac{\mu_1}{2}$

Retailers' profits under price differentiation with menu costs

Retailers' profits under price differentiation and menu costs		Retailer 2		
		Differential Prices	Single Price	
Retailer 1	Differential prices	$t/2.(1-\alpha)^2$; $t/2.(1+\alpha)^2$	$t/2 \cdot (1-\alpha) \cdot (1-\alpha+\beta_2)$; $t/2 \cdot (1+\alpha-\beta_2)^2$	
			$t/2.(1+\beta_1)^2$; $t/2.(1-\beta_1)^2$	
	Single price	$t/2.(1-\alpha-\beta_1)^2$; $t/2.(1+\alpha).(1+\alpha+\beta_1)$	t/2 ; t/2	
		$t/2.(1-\beta_2)$; $t/2.(1+\beta_2)^2$		

$$0 < \alpha := \frac{1}{t} \left(\frac{\mu_1 - \mu_2}{3} \right) < 1 \qquad \qquad 0 < \beta_i(a) := \frac{1}{t} \left(\varepsilon(a) - \frac{\mu_i}{2} \right) < 1$$

Conclusions

Without menu costs:

- Single price is not equilibrium: there are incentives to decide unilaterally to surcharge card transactions;
- There is equilibrium with differential prices: the equilibrium surcharge, or <u>spread</u>, is equal to the merchant fee minus the cost of the store credit ("retailer's net avoided cost": $m c_s$);
- The interchange fee becomes neutral: does not affect card usage;
- Merchants are indifferent with respect the non-surcharge rule:
 same profit with or without differentiation;
- Consumers obtain maximum welfare: the welfare under differentiation is equal to the maximum utility under nonsurcharge, independently of the interchange rate (neutral);

Conclusions

- With menu costs:
 - Interchange fee is <u>not neutral</u> anymore:
 - If low: single price equilibrium;
 - If high: differential prices equilibrium;
 - **Endogenous cap:** a high interchange fee can deviate merchants from the single price, limiting the market power of the credit card system ("excessive" usage of credit cards);
 - Retailer with the <u>highest (smallest) menu cost</u> have a <u>smaller</u> (<u>higher) profit</u> than under no-surcharge single price equilibrium;
 - <u>Card system</u> has a <u>smaller profit</u>, because the <u>volume of</u> <u>transactions decrease</u>;
 - Consumers increase welfare compared with non-surcharge single price equilibrium, despite the menu costs.

THE END

Thank you!!

Email: marcos.valli@bcb.gov.br